Pharmacotherapy can be defined as the treatment and prevention of illness and disease by means of trippin morty chocolate bar of chemical or biological origin. It ranks among the most important methods of medical treatment, together with surgery, physical treatment, radiation and psychotherapy. Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life.
Unprecedented developments in genomics and molecular biology today offer a plethora of new drug targets. The use of modern chemical synthetic methods (such as combinatorial chemistry) enables the synthesis of a large number of new drug candidates in shorter times than ever before. At the same time, a better understanding of the immune system and rapid progress in molecular biology, cell biology and microbiology allow the development of modern vaccines against old and new challenges.
However, for all these exciting new drug and vaccine candidates, it is necessary to develop suitable dosage forms or drug delivery systems to allow the effective, safe and reliable application of these bioactive compounds to the patient. It is important to realize that the active ingredient is just one part of the medicine administered to the patient and it is the formulation of the drug into a dosage form or drug delivery system that translates drug discovery and pharmacological research into clinical practice.
Indeed the drug delivery system employed plays a vital role in controlling the pharmacological effect of the drug as it can influence the pharmacokinetic profile of the drug, the rate of drug release, the site and duration of drug action and subsequently the side-effect profile. An optimal drug delivery system ensures that the active drug is available at the site of action for the correct time and duration.
Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect.
– Parenteral drug delivery: Drugs can be administered directly into the body, through injection or infusion. Depending on the site of administration into the body it can be differentiated into:
– Controlled release: Controlled-release systems also offer a sustained-release profile but, in contrast to sustained-release forms, controlled-release systems are designed to lead to predictably constant plasma concentrations, independently of the biological environment of the application site. This means that they are actually controlling the drug concentration in the body, not just the release of the drug from the dosage form, as is the case in a sustained-release system.
– Targeted drug delivery (smart drug delivery): It is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue
A disease is an abnormal condition that affects the body of an organism. It is often construed as a medical condition associated with specific symptoms and signs. It may be caused by factors originally from an external source, such as infectious disease, or it may be caused by internal dysfunctions, such as autoimmune diseases, it sometimes includes injuries, disabilities, disorders, syndromes, infections, isolated symptoms, deviant behaviors, and a typical variations of structure and function.
Medical therapies are efforts to cure or improve a disease or other health problem. A number of drug molecules have already been developed but development of further more new drug molecule is expensive and time consuming. So, improving efficacy ratio of “old” drugs is considered a good idea. This has been attempted by developing new drug delivery systems that helps in individualizing drug therapy, dose titration, and therapeutic drug monitoring easily. Delivering drug at controlled rate, slow delivery, targeted delivery are very attractive methods and have been pursued vigorously. Drug delivery systems modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety. It also ensures patient convenience and compliance.
There are some drug molecules which show site specific drug release eg, peptides and proteins. Such drugs cannot show their action without appropriate drug delivery system. So,the increasing number of peptide and protein drugs being investigated demands the development of dosage forms which exhibit site-specific release. Delivery of drugs into systemic circulation through colonic absorption represents a novel mode of introducing peptide and protein drug molecules and drugs that are poorly absorbed from the upper gastrointestinal (GI) tract. Oral colon-specific drug delivery systems offer obvious advantages over parenteral administration. Colon targeting is naturally of value for the topical treatment of diseases of the colon such as Crohn’s disease, ulcerative colitis and colorectal cancer. Sustained colonic release of drugs can be useful in the treatment of nocturnal asthma, angina and arthritis. Peptides, proteins, oligonucleotides and vaccines are the potential candidates of interest for colon-specific drug delivery. Sulfasalazine, ipsalazide and olsalazine have been developed as colon-specific delivery systems for the treatment of inflammatory bowel disease (IBD).